If it's not what You are looking for type in the equation solver your own equation and let us solve it.
55000=-2.6q^2+900q
We move all terms to the left:
55000-(-2.6q^2+900q)=0
We get rid of parentheses
2.6q^2-900q+55000=0
a = 2.6; b = -900; c = +55000;
Δ = b2-4ac
Δ = -9002-4·2.6·55000
Δ = 238000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{238000}=\sqrt{400*595}=\sqrt{400}*\sqrt{595}=20\sqrt{595}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-900)-20\sqrt{595}}{2*2.6}=\frac{900-20\sqrt{595}}{5.2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-900)+20\sqrt{595}}{2*2.6}=\frac{900+20\sqrt{595}}{5.2} $
| 3x5=x+7 | | 6-x=x+4/3 | | -8(7-6m)=24+8m | | -8(1-3k)+5k=-2k-8 | | 2u-6=8 | | -8(3+6x)=312 | | 5h+5=30 | | -96=-4(6-3b) | | a/4=5/2 | | 8x/9-x/6=52 | | X-(x+76)=180 | | 10+b/15=9 | | -8=-10+x/3 | | (2y-4/5=2/3) | | 13(2y-4/5=2/3) | | -20=a-18 | | 24w=-3 | | 0=14-9.8*t | | 6(4x-7)=-2(2x5) | | -2x-8=-4x-2 | | x-4=-6x-39 | | −18x+12=20 | | -7x-10=3x-90 | | 3x-6=7x18 | | 88=32b-88 | | 5x+1-x=10+3x+3 | | x+(x+2)+(x+4)=12(x+2)+300 | | 4x2+4=20 | | x+(x+2)+(x+4)=2(x+4)-30 | | 10=0.1w+9 | | 3x-23=11 | | 6n-8=3n+12 |